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Abstract. A theoretical study is performed on the confined electron and shallow donor states properties in
graded GaAs/AlxGa1−xAs spherical quantum dots. The two lowest energy levels of a confined electron are
obtained taking into account the dependence of the electron effective mass on the spatial profile of the Al
molar fraction. The ground state of a single Si shallow donor, which may be located at an arbitrary position
in the structure, is calculated through a variational approach. Depending on the dot interface width and
localization, we find that the energy levels of the electron and donor states for the system under study can
be blue or red shifted appreciably in comparison to those calculated within the sharp interface picture.
We show that it is necessary to have accurate information concerning the interface of semiconductor dots
whose samples are used in the experiments, in order to achieve a better understanding of their optical
properties.

PACS. 68.10.Gw Interface activity, spreading – 68.65.+g Low-dimensional structures (superlattices,
quantum well structures, multilayers): structure, and nonelectronic properties – 71.23.An Theories and
models; localized states

1 Introduction

Due to advances in modern crystal-growth techniques
such as molecular-beam epitaxy and metalorganic chem-
ical vapor deposition, the investigation of confined elec-
tron as well as impurity (donor or acceptor) states in low-
dimensional structures such as quantum wells (QWs), su-
perlattices, quantum wires, and quantum dots (QDs) has
attracted a lot of theoretical and experimental attention
during the last two decades [1–6]. Recently one has been
able to grow semiconductor QDs in macroscopic quanti-
ties with a high degree of control and reproducibility [7] to
investigate three-dimensional (3D) carriers confinement,
both for fundamental study in physics and for possible
device applications in the case of the particularly sharp
state density [8]. This progress has motivated many ex-
perimental studies on the electronic and optical properties
of the zero-dimensional (0D) electron systems [9]. One of
the most interesting phenomena is the effect of dot-size
fluctuations on the energy levels in such strong confine-
ment structures [10–12]. Since the optical and transport
properties in bulk and low-dimensional semiconductors
are strongly influenced by the electron localization, impu-
rity energy levels, and also by the types of low-dimensional
structures, the knowledge of the confinement potential ef-
fect on the electron states is essential [13,14].
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In a single (or isolated) QD, the energy spectrum of
electrons is completely discrete and has atomic-like energy
levels. Therefore, the electrons localized in this quasi-zero-
dimensional system have some common features with shal-
low donors in semiconductors. For small-size dots with
high barriers, the confinement energy is much stronger
than the Coulomb interaction. As a consequence, one is
allowed to use the nearly independent particle limit to de-
scribe the electron states in these structures [15]. Recently,
experiments involving an ensemble of QDs have revealed
a difference when compared to epitaxially grown quan-
tum dots, i.e., the transition linewidths in the former are
significantly broader than those in the later [16–19]. The
reason for this difference has been supposed to be due to
dot-size fluctuation effects.

Most of the previous theoretical analysis on the
electron states in semiconductor QDs (in particular,
GaAs/AlxGa1−xAs QDs) addressed sharp confinement
models, i.e., the interface is considered to be absolutely
sharp so that the confinement potential can be expressed
by a 3D square-well, for example. However, experimental
results have shown that the interfaces between GaAs and
AlxGa1−xAs are not abrupt, and they extend through a
region at least as wide as two GaAs unit cells along the
growth axis of their two dimensional confinement struc-
tures [20]. The same should occur for heterostructures
with other types of semiconductors. While considerable
effort was developed for the understanding of interface
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effects in 2D semiconductor confinement systems [21,22],
this is not the case for semiconductor QDs. Recently, we
have found in two preliminary investigations that the ef-
fect of a graded interface is more pronounced for an elec-
tron as well as a shallow donor in a QD than in a QW due
to the stronger confinement [23,24]. However, in those two
previous theoretical works we have considered only the
case of the interface inside the well (dot) material, which
always enhances the confinement effect of the system, and
consequently leads to a blue shift of the electron energy
levels.

The aim of this work is to develop a systematic in-
vestigation of interface related effects on the energy levels
of an electron and a Coulomb-bound electron in a QD
structure, in particular taking into account the interface
localization. Consequently, it is essential to consider not
only the interface width but also to specify all their pos-
sible locations in the structure, and how to describe the
role of both (width and location) on the QDs confinement
properties. Two parameters describing the interface are
introduced, the interface width W and the interface lo-
calization α, which span a special two-dimensional (2D)
space in such a way that we can easily discuss the electron
energy shift due to the interface effect.

This paper is organized as follows. In Section 2, we
describe the interface and shallow donor model, as well
as our theoretical approach to solve the Schrödinger-like
equations for an electron in a graded GaAs/AlxGa1−xAs
spherical QD in the absence and in the presence of a Si-
donor ion within the multistep approach. In Section 3,
the numerical results are presented describing the electron
states, their energy levels and their intersubband (1s →
2p) transition energies, which are analyzed in the W − α
space. A similar procedure is undertaken in Section 4 for
the energy level and the binding energy of the shallow
donor ground state. Section 5 is devoted to our discussions
and conclusions.

2 Interface description and calculation
approach

The quantum dot we consider consists of a GaAs sphere
of radius R immersed in a AlxGa1−xAs bulk alloy. The
GaAs dot is surrounded by a cap, which is a graded in-
terface with finite width W , extending from R − αW to
R + (1 − α)W , as shown in Figure 1. In doing so, we
have chosen the dot center as the origin of our coordi-
nates. A variation of two interface parameters, W and α,
can represent the dot-size fluctuation in the structures: a
change in the interface width (W ) corresponds to a bar-
rier positioning fluctuation, while a variation in the in-
terface position (α) to a dot-radius fluctuation. In exper-
iments, the interface width can be measured accurately,
and shows a typical value at least of two GaAs lattice
constants [20,25]. Since the parameter α is introduced to
indicate the interface location, it is natural that 0 ≥ α ≥ 1.
When α = 0.5, the sharp barrier is located at the middle
of the interface, while for α = 1 (α = 0) the interface

Fig. 1. Diagram of a graded GaAs/AlxGa1−xAs spherical
quantum dot. R is the dot radius, W is the interface width,
and α = (0, 1) determines the interface position.

region is restricted to be completely inside (outside) the
reference QD square well region.

Within the framework of the standard effective-mass
approximation [26], the Hamiltonian describing an elec-
tron state in the GaAs/AlxGa1−xAs QD structure can be
written as

H = −~
2

2
5 1
m∗(r)

5− ZDe
2

ε0|r −R0|
+ V (r), (1)

where r is the position of the electron, the second term
corresponds to the Coulomb interaction; ZD is the donor
ions number with charge +e; ZD = 0 for a free electron,
and ZD = 1 for a Si donor located at positionR0; ε0 = 12.5
is the GaAs dielectric constant [27], which is assumed to
be uniform in the whole structure, and the last term is the
QD confinement potential.

In equation (1), the graded spherical QD confinement
potential V (r) depends on the interfacial aluminum molar
fraction in the structure, and is modeled by the following
expression [28]

V (r) =
0, r < R− αW ;
0.693y+ 0.222y2 (eV), R− αW <r <R+ (1− α)W ;
0.693x+ 0.222x2 (eV), r > R+ (1− α)W,

(2)

where y(r) describes the interfacial Al molar fraction pro-
file, which is assumed to be given by

y(r) = x

[
r + αW −R

W

]
. (3)

In equation (2), the electron band offset is considered
to be 60% of the total band-gap difference between GaAs
and AlxGa1−xAs [29]. m∗(r) is the electron effective mass,
which also depends on the interfacial profile of the Al mo-
lar fraction, and is given by the formula [27]

m∗(r)/me =
0.067, r < R − αW ;
0.067 + 0.083y, R− αW < r < R+ (1− α)W ;
0.067 + 0.083x, r > R + (1− α)W,

(4)
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where me is the electron mass in vacuum. This type of
linear dependence was used in previous works for different
systems [23,24], but limiting the interface to be totally
inside wells or dots (i.e., α = 1), so that it always was
found to increase the confinement effect.

Since the interface effect on the electron state becomes
experimentally negligible in weakly confined systems, we
will limit ourselves mainly to strong confinement QDs.
The spherical polar coordinates have been taken for the
study of the free electron states, while the cylindrical polar
coordinates was used for the shallow donor state descrip-
tion, where the donor center is fixed on the z axis at R0 =
(0, 0, R0). In this work, the Al molar fraction in the bulk
AlxGa1−xAs alloy for r > R+ (1−α)W has been fixed as
x = 0.3. For our convenience, we remember that for GaAs
the effective Bohr radius is a∗0 = ~2ε0/m

∗(0)e2 = 98.7 Å,
and the effective Rydberg is R∗ = e2/2ε0a∗0 = 5.83 meV.

By disregarding the electron-electron interaction, the
Schrödinger equations can be solved exactly for a spherical
sharp (abrupt) QD confined electron and also for an elec-
tron bound to a shallow donor confined in a sharp spheri-
cal QD (i.e., W = 0) when the electron mass is considered
to be uniform in the whole structure [4,30]. However, until
now it is still impossible to obtain an analytical solution
when the existence of a graded (nonabrupt) interface is
considered, as a consequence of the spatial dependence of
the electron effective mass. Therefore, we rely on a multi-
step approach [31] to solve the Schrödinger equation with
the Hamiltonian H since it can not be solved analytically
in our structures. The interface is divided into N seg-
ments, and the Al concentration is taken as a constant
in each of them. Thus, the continuous interface poten-
tial is replaced by a multistep potential well. Its continu-
ous change can be recovered provided that the segments
become finer and finer (i.e., N → ∞). Therefore, equa-
tions (2) and (4) for the confinement potential and the
electron effective mass in the interface region are approx-
imated, respectively, by the multistep functions

V (r)→ Vj = V

(
rj−1 + rj

2

)
, (5)

and

m∗(r)→ m∗j = m∗
(
rj−1 + rj

2

)
, (6)

for rj−1 < r < rj with j = 0, 1, 2, · · · , N,N + 1. No-
tice that j = 0 corresponds to the y = 0 region where
V (r) = 0, and j = N + 1 to the y = x region in which
V (r) = VMAX = 0.693x+ 0.222x2 eV. In this work, only
the ground (1s-like) state and the lowest excited (2p-like)
state of a free electron will be studied, which have been
shown to be the most important ones in the structures
under investigation [4,23]. Although we have used the no-
tation of the hydrogen-atom states for indicating the free
electron states in a spherical QD, these states have quite
different properties from each other due to the different
types of confinement potentials [15].

In a spherically symmetric potential such as the spheri-
cal QD or the Coulomb potential, the wave functions of an

electron have the well-defined orbital and magnetic quan-
tum numbers. In the absence of any impurities [30] and
does not taking care of the angular part Y (θ, φ) (spherical
harmonics) of the electron probability distribution, the ra-
dial part of the wave function ψµ,j(r), (µ = 1s and 2p) of
an electron in the µ-th state with energy Eµ and momen-
tum kµ,j = [2m∗j(Eµ − Vj)/me]1/2/~ in the j-th region of
the structure can be written in the following form

ψ1s → ψ1s,j(r) =
1
r

[A1s,j exp(ik1s,jr)

+B1s,j exp(−ik1s,jr)] (7)

for the 1s-like state with angular momentum quantum
number l = 0, and

ψ2p → ψ2p,j(r) = A2p,j
1
r

(
1 +

1
k2p,jr

)
exp(ik2p,jr)

+B2p,j
1
r

(
1− 1

k2p,jr

)
exp(−ik2p,jr)

(8)

for the 2p-like state with l = 1. Considering the
current-conserving conditions for both ψµ,j(r) and
(1/m∗j)(dψµ,j/dr) at each boundary of all the steps, the
wave function normalization, and using the fact that
ψµ,j(r) → 0 when r → ∞, one can determine all the
coefficients Aµ,j , Bµ,j and the energy Eµ of the µ-th state
by solving numerically a matrix equation resulting from
a multiplication of N + 1 (2× 2) transfer matrixes equa-
tion [31].

For the structure with a donor at position R0 6= 0, the
spherical symmetry of the system is broken. Therefore, an
exact solution for the Schrödinger equations becomes im-
possible even in the case of the uniform electron effective
mass [4]. A variational calculation for the ground state
(also called 1s-like) of the electron is developed using a
similar scheme for donors in QWs and superlattices [3].
Since in general the electron energy related to the QD po-
tential is much larger than the Coulomb energy, one can
explicitly factor out the associated lowest-energy solution
of a free electron from the wave function of the donor
state [32,33]. Consequently, the radial part of the varia-
tional wave function of the electron ground state can be
expressed as a product of two functions,

Ψ1s(r,R0) = ψ1s(r) exp
[
−β
√
ρ2 + γ2(z −R0)2

]
, (9)

where the donor position has been chosen at R0 =
|(0, 0, R0)|; ρ is the electron distance in the x-y plane.
The first factor on the right-hand side of equation (9) is
the wave function of the free electron ground state given
by equation (7), and the second is related to the Coulomb
interaction between the electron (−e) and the donor ion
(+e). The energy expectation value ED of the electron
state Ψ1s is given by

ED =
〈Ψ1s(r,R0)|H|Ψ1s(r,R0)〉
〈Ψ1s(r,R0)|Ψ1s(r,R0)〉 (10)
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Fig. 2. The 1s (a) and 2p (b) state widths as a function of the interface width for an electron in GaAs/Al0.3Ga0.7As quantum
dots of radii R = 50 Å, 100 Å, 200 Å, and 400 Å. The interface positions are determined by different values of α: α = 0.00
(solid), α = 0.25 (dotted), α = 0.50 (dashed dotted), α = 0.75 (dashed), and α = 1.00 (long dashed).

which can be minimized numerically through the two vari-
ational parameters β and γ. We have examined the accu-
racy of this approach. In both asymptotic limits of the QD
size (R →∞ and R → 0), the correct 3D hydrogenic be-
havior can be recovered. On the other hand, the difference
between the present result and the exact solution obtained
in reference [4] (defined as the binding energy EB), which
is given by

EB = E1s −ED, (11)

is very small, less than one percent for a donor located
at the center of an abrupt GaAs/Al0.3Ga0.7As QD with
R = 50 Å.

3 The confined electron states

The effective mass approximation is applicable only for
weakly bound states. In general, it requires an average
radius larger than 20 Å for a confined electron in most
semiconductors [26]. The effective Bohr radius of an elec-
tron bound to a shallow donor in bulk GaAs is about
a∗0 = 98.7 Å. However, the average radius of the electron
in GaAs-based low-dimensional structures should be much
smaller than a∗0 when the confinement potential becomes
stronger. In order to verify whether this approximation
may be still suitable to strong confinement QDs, we plot
in Figures 2a and 2b, respectively, the width of the 1s
and 2p free electron states 〈ψµ|r2/3|ψµ〉1/2 as a function
of the interface width up to 20 Å with α = 0.00 (solid),
0.25 (dotted), 0.50 (dash-dotted), 0.75 (short-dashed), and
1.00 (long-dashed curves). Four different QDs with radii
R = 50 Å (the lowest), 100 Å (second lowest), 200 Å

(second highest), and 400 Å (highest groups) are consid-
ered. It is clearly shown that the QD potential confines the
electron wave function considerably, and this confinement
effect is strong when the dot size decreases. The width of
the 1s state in an R = 50 Å QD with a 20 Å graded in-
terface still has a value larger than 20 Å when α = 1.0. As
a consequence, the standard effective mass approximation
is reliable for the present study. The difference between
the 1s and 2p states shows that the influence of the po-
tential confinement is not the same for each of them. In
strong confinement dots, the relative state width differ-
ence between them are quite large, but becomes smaller
very fast when the dot size increases since all of the states
will degenerate for the case of a infinitely large dot. For
example, the ratio between the 2p-state and the 1s-state
widths is 1.48 for an abrupt QD with R = 50 Å, and then
becomes 1.23, 1.16, and 1.15 for R = 60 Å, 100 Å and
200 Å, respectively.

The interface effect on the state width depends not
only on the interface width itself, but also on the interface
position, such that the interface width influences the abso-
lute value of the state width, while its position determine
if the state width increases or decreases. It is interesting
to observe that the 2p state width for the R = 50 Å dot in-
creases dramatically for the highest α (for which the part
of the interface located inside the dot is stronger) when
the interface width becomes wider. Our results are consis-
tent with the exact ones: there are no bound states for an
abrupt QD with radius R < RMIN = π~/(8m∗VMAX)1/2,
and no excited states when R < 2RMIN [30] in the case of
the uniform electron effective mass. This is different from
the electronic subbands case in 2D structures, in which
the lowest subband is always bound. We will show later
that when the dot radius decreases further, the 1s state
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Fig. 3. Energy levels of the electron 1s (line-nets) and 2p (bullets) states as a function of the W and α interface parameters
for four QDs with radii: (a) R = 50 Å, (b) R = 60 Å, (c) R = 100 Å, and (d) R = 200 Å.

will become wider too since the structure is moving from a
QD to bulk Al0.3Ga0.7As due to the finitely-high barrier.
On the other hand, the effective mass approximation can
be broken down if the height of the confinement potential
is enhanced, e.g., for the case of small quantum dots with
an infinitely-high barrier.

The calculated electron energy levels of the confined
1s (nets) and 2p (bullets) states are plotted in Figure 3
in the W − α space for QDs with radii (a) R = 50 Å,
(b) 60 Å, (c) 100 Å, and (d) 200 Å. Notice that the case
W = 0 Å corresponds to dots having an abrupt interface,
which can be taken as a reference to show the interface-
fluctuation effects. The QD confinement influence on the
electron changes from state to state (see Fig. 2). All the
electron states will become degenerate with zero state en-
ergy when the dot size goes to infinite. That is not the
case for a hydrogen atom where the degenerate states are
dependent on their principal quantum numbers and the
electron is always around the hydrogen ion. Due to the
QD confinement, one of the electron states is confined
more strongly, becoming the ground state, while the en-
ergy difference between the states increases for stronger
confinement, which can be seen by comparing the cases
for the different QD radii in Figure 3. The interface effect
on the excited (2p) state is stronger than on the ground
(1s) state. This is due to the fact that the electron in the
2p state has a larger average radius so that it is closer
and more sensitive to the interface than the electron in
the 1s state. When the interface is localized inside the
dot (α = 1), which corresponds to a stronger confinement
dot due to the size-fluctuation, it blue shifts the electron

energy levels. This blue-shift effect decreases when the in-
terface moves further away from the dot center, and then
a red shift comes out after a turning point. The interface
influence on the energy levels becomes weaker with in-
creasing dot size. It is obvious that the strongest interface
effect on the 1s state occurs for the R = 50 Å dot, but it
is also important in the 2p state case for the R = 60 Å dot
because of the state spreading. The minimum dot radius
for the 1s (2p) state to be bound is 24.8 (49.6) Å for
the abrupt GaAs/Al0.3Ga0.7As dot. Thus, the ground (1s)
state can still be recognized as occurring in a strong con-
finement system like a R = 50 (60) Å GaAs/Al0.3Ga0.7As
dot, while the 2p state in a R = 50 Å dot is very close to
a critical point at which there is a transition from a 0D to
a 3D structure behavior.

Since the state energy levels shifts due to the inter-
face effect can give an important contribution to the PL-
spectrum broadening in QD samples [19], we show more
clearly in Figure 4 the interface dependence of the energy
levels of the two lowest states of an electron in anR = 50 Å
dot. The energies of the 1s state and of the 2p state in
the upper and lower panels of Figure 4, respectively, are
depicted in the W −α space as isoenergetic lines (in meV
units). Each associated energy value is relative to the cor-
responding levels in the abrupt dots. It is important to
notice that:

(i) the energy shifts due to all the possible size fluctuations
of QDs are separated into two different sectors, the blue-
shift sector and the red-shift sector, by a boundary (solid
curves with a zero value) in which the electron energies in
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Fig. 4. W − α diagram for the 1s (a) and 2p (b) states of a
free electron in a R = 50 Å GaAs/Al0.3Ga0.7As quantum dot.
The numbers in the isoenergetic lines indicate the state energy
(in meV units) which is relative to those of a similar abrupt
dot structure.

the graded QDs are equal to that in the sharp interface
QD (W = 0);

(ii) the 2p state (see the lower figure) has a so called free
state sector (unbound state E2p > VMAX) in the strong
confinement region (large α and wide W ). With decreas-
ing interface width and moving the interface close to the
dot center, this state changes from unbounded to bounded
when E2p < VMAX, being the transition line displayed as
a solid curve indicated by the value 13.25 meV;

(iii) the maximum energy difference of the intersubband
(1s→ 2p) transition due to changes on the interface width
for a set of single QD structures can be as large as 90 meV,
and the broadening of this transition should be of the same
order. Therefore, graded interface effects can contribute
significantly to the intersubband transition energy broad-
ening in QDs, and this contribution should be detectable
through optical measurements;

(iv) a graded interface having a width from one to three
GaAs lattice constants [20] in the R = 50 Å dot can
turn the 2p state into an unbound one, if the part of
the interface inside the dot is more than 60%. In this
case, there are no bound excited states in the system any-
more. This interesting result can explain qualitatively the
recent experimental observation of the existence of only
one PL peak from a single quantum dot published by two
groups [18,19].

Since possible experimental results for the structures
studied here may concern the intersubband transitions be-

tween two electron states, we display in Figure 5 the tran-
sition energy between the ground state (1s) and the low-
est excited (2p) state of an electron in the W − α space
for the same structures as shown in Figure 3. The ref-
erence planes indicated by the line nets characterize the
1s → 2p transition energy for an electron in the corre-
sponding structures with abrupt interfaces. The transition
energy is smaller when the dot size increases since the car-
rier confinement becomes weaker, while it decreases when
R→ 0 (see Fig. 5a for large α) since the bound 2p state is
going to be a bulk Al0.3Ga0.7As state, as discussed before.
When compared to the shifts of the state-energy levels (see
Fig. 3), the intersubband transition-energy shifts are rela-
tively small because of the energy-shift cancellation of the
ground state and the excited state. There are two opposite
transition-energy shifts due to the interface effect, i.e., the
blue-shift (dots with a line above the reference plane) and
the red-shift (dots with a line below the reference plane),
which are separated by the dots without any tails in Fig-
ure 5. There is an additional remark for the R = 50 Å dot
in the region of large α and wide W : the 2p state is no
longer bound, which is represented by the existence of an
empty sector in Figure 5a.

Although the size-fluctuation effect on the intersub-
band transitions is relatively weak as compared to the
effect on the state energy levels, the transition-energy
shifts due to this effect has been shown still to be signifi-
cant in the strong confinement case. As can be seen from
Figure 5, the transition from blue to red in the R = 50
Å dot occurs around α = 0.5, and is weakly dependent
on the interface width. With increasing dot radius, this
transition will take place later. For instance, the values of
α for the transition are 0.39, 0.40, 0.42, and 0.6 for the
dots having a fixed interface width of W = 20 Å and radii
R = 200 Å, 100 Å, 60 Å, and 50 Å, respectively. A faster
increase in α occurs from R = 60 Å to R = 50 Å due to
the fact that now the 2p state is moving into the unbound
phase so that the interface-width effect becomes weaker,
and consequently it needs a bigger α to compensate. There
exists a three-sector intersection point for the blue-, red-
shift and unbound sectors around W = 20 Å and α = 0.6
for the R = 50 Å dot, while it is not the case for the 2p
state energy as shown in Figure 4 because the blue shifts
of both 1s and 2p states cancel each other. Away from the
transition boundary consisting of the solid dots without
lines, the shift of the 1s → 2p transition energy due to
the interface effect is considerably large, e.g., an interface
width W = 10 (20) Å inside (outside) the R = 100 Å
dot enhances (decreases) the transition energy as much
as about 5 (10) (3 (4)) meV. Such large difference for a
single electron transition should be measurable by optical
experiments.

4 The shallow donor states

By using the variational approach described in Section 2,
a numerical calculation has been performed to obtain the
energy levels and the wave functions of a shallow donor
in a graded spherical GaAs/AlxGa1−xAs quantum dot,
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Fig. 5. 1s → 2p transition energies (bullets) as a function of the W and α interface parameters for four QDs with radii: (a)
R = 50 Å, (b) R = 60 Å, (c) R = 100 Å, and (d) R = 200 Å. Lines below and above the dots indicate the blue and red shifts,
respectively. The empty area is the unbound 2p sector.

which may be located at any position inside the Gas re-
gion. There are two variational parameters in the trial
wave function, as introduced in equation (9): one (β) de-
scribes the Coulomb interaction between the electron and
the donor ion, and the other (γ) is related to the bro-
ken spherical symmetry of the system which occurs for
the off-dot-center donor. Notice that the parameter β has
the dimension of the reverse of length, while γ is dimen-
sionless. Three facts [24] are helpful here for checking the
numerical results: in the shallow donor absence, β is equal
to zero since no Coulomb interaction is considered; in the
presence of a dot-center donor, γ is always equal to one
because of the spherical symmetry of the structure; fi-
nally, when the dot size becomes infinite and the donor
is far away from the interface, both β (in units of 1/a∗0)
and γ approach one to recover the hydrogenic atom-like
behavior.

In order to understand the donor state [24], we have
initially calculated three Ψ1s-based state widths for a QD
with abrupt interface (W = 0) as a function of the dot ra-
dius for a donor located at the dot center R0 = 0 (solid),
at the midpoint R0 = R/2 (dashed) between the dot cen-
ter and the interface, and in the interface R0 = R (dot-
dashed curves). The state width 〈Ψ1s|(x2 + y2)/2|Ψ1s〉1/2
in the x-y plane is plotted in Figure 6a, the state width
〈Ψ1s|z2|Ψ1s〉1/2 related to the dot center in the z di-
rection is presented in Figure 6b, and the state width
〈Ψ1s|(z − R0)2|Ψ1s〉1/2 for the donor center is depicted in
Figure 6c.

We have found that the existence of a shallow donor
allows the lowest bound state to occur even when

Fig. 6. The dot radius dependence of abrupt
GaAs/Al0.3Ga0.7As quantum dots of several state widths: (a)
the state width 〈Ψ1s|(x2 + y2)/2|Ψ1s〉1/2 in the x-y plane; (b)
the state width 〈Ψ1s|z2|Ψ1s〉1/2 related to the dot center in
the z direction; and (c) the state width 〈Ψ1s|(z −R0)2|Ψ1s〉1/2
for the donor center. Three donor positions are considered: a
dot-center donor (solid), a midpoint donor (dashed), and an
interface donor (dot-dashed).
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Fig. 7. Binding energy of a shallow donor at the dot center R0 = 0 (bullets) as a function of the W and α interface parameters
for four QDs with radii: (a) R = 50 Å, (b) R = 60 Å, (c) R = 100 Å, and (d) R = 200 Å. Lines below and above the dots
indicate the relationship of the binding energy value with the blue and red interface related energy level shifts, respectively.

R = RMIN = 22 Å, which is smaller then the value ob-
tained for a bound electron in an undoped dot (24.8 Å).
This is due to the fact that the electron in the doped QD
has a heavier average effective mass than in the undoped
QD. The strongest QD confinement due to the shallow
donor occurs when the dot radii is in the 30 - 40 Å range,
where all the state widths are close to 20 Å, proving that
the standard effective mass approximation description of
a QD with a shallow donor is valid [26].

All the state widths and their differences decrease
when the dot radius is reduced up to 30 Å since the
Coulomb potential is much weaker than the 3D confine-
ment potential. This also explains why the state width of
a shallow donor in small doped QDs is very close to that
of an electron in small undoped QDs, which can be seen
by comparing Figure 6 with Figure 2. However, when R
approaches the limit RMIN = 22 Å, the state widths be-
come larger because the QD structure is turning to be
bulk AlxGa1−xAs. It is important to notice that:

(i) for a dot-center donor, the state width in the x-y plane
is equal to one in the z direction (compare the three solid
curves in Figure 6a, 6b and 6c) because of the spherical
symmetry of the system. All of them approach to 98.7 Å
(the GaAs effective Bohr radius) when the dot radius goes
to infinite, been retrieved the 3D hydrogenic atom-like be-
havior;

(ii) the midpoint-donor state widths (solid lines) in the
x− y plane (Fig. 6a) and the donor center (z−R0)2 state
(Fig. 6c) have a similar behavior as those of the dot-center

donor (Fig. 6b). The z2 state width for the center donor
(R0 = 0) is close to the interface donor (R 6= 0) when the
dot radii are smaller than 500 Å, after which the differ-
ence between them increases dramatically. The interface
donor z2 state widths does not show any pinning behav-
ior. The reason for this is that the confinement potential
is relatively weak as compared to the Coulomb interac-
tion. Consequently, the electron is moving tightly with
the donor center, thus the average distance between the
electron and the dot center becomes larger;

(iii) the state widths of an interface donor in the z direc-
tion increases much faster than in the x-y plane when the
dot radius is larger because the confinement potential of
the dot forces the electron to be closer to the dot center
(i.e., further away from the donor center), so that the dis-
tance along the z direction between the electron and the
donor center becomes larger.

When R → ∞, the interface donor behaves as in a
heterostructure, where it is no longer possible to recover
the 3D situation due to the existence of a barrier repel-
lent force. However, an equilibrium will be set up between
the Coulomb interaction and the barrier potential when
the dot size increases. In this case, the state width con-
cerning the donor center (z − R0)2 shows a pinning be-
haviour. The pinning behavior begins to occur at about
400 Å, which is four times larger than the width of a 3D
donor. According to the standard theory for the relation
between the radii and energies of the 3D hydrogenic states,
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Fig. 8. Binding energy of a shallow donor at the dot center R0 = R/2 (bullets) as a function of the W and α interface parameters
for four QDs with radii: (a) R = 50 Å, (b) R = 60 Å, (c) R = 100 Å, and (d) R = 200 Å. Lines below and above the dots
indicate the relationship of the binding energy value with the blue and red interface related energy level shifts, respectively.

we estimate the binding energy of the interface donor to
be about four times smaller than one effective Rydberg,
which is consistent with our numerical finding 0.23R∗ in
the limit R→∞. The state width in the x-y plane for the
interface donor is pinned also but close to 180 Å, which
is larger than one effective GaAs Bohr radius. This result
is due to the fact that the dot barrier pushes the elec-
tron away from the interface where the donor is located.
Thus, the electron is on average further away from the
donor center than in a 3D donor case, and consequently
the Coulomb interaction decreases, which in turn leads to
an enhancement of the wave function extent in the x-y
plane.

The binding energy of a shallow donor, which is
an experimentally measurable quantity, can be obtained
through equation (11). Before doing this, two calculations
have to be performed: the first is the lowest energy level
of a free electron in the QD with ZD = 0, and the second
is the ground state of a shallow donor, which is associ-
ated with ψ1s for ZD = 1. Figure 7 depicts the binding
energy for the shallow donor at the dot center R0 = 0 as
a function of both the interface width W and the inter-
face position α for R = 50 Å, 60 Å, 100 Å, and 200 Å. The
stronger QD confinement forces the electron to be closer
to the impurity center. As a consequence, the Coulomb in-
teraction between the donor ion and the electron becomes
stronger, which enhances considerably the shallow donor
binding energy.

The interface effect is shown to be important only for
strong confinement QDs. For instance, both the blue shift
and the red shift of the binding energy are about 4 (2) meV
when R = 50 Å (R = 100 Å) and 20 Å thick interfaces for
α = 0 or α = 1 cases. Therefore, the binding energy shift
for the small QDs due to the existence of the interface is
also large enough to be detected by optical experiments.
However, these shifts for a 200 Å dot are almost ten times
smaller than those in the strong confinement QDs. It is
clear from Figure 7 that the blue-shift and the red-shift
sectors of the binding energy in the W − α space are sep-
arated by a transition line for α around 0.40∼0.45, where
the energy shifts of the free electron state and the shal-
low donor state cancel each other. As compared to the
transition energy of the electron in a undoped dot (see
Fig. 5), the binding energy shift of the donor due to the
interface fluctuation is smaller because the donor ion at
R0 = 0 attracts the electron so that the average state
width spreading decreases, which leads the electron to be
further away from the interface.

When the donor moves away from the dot center, the
spherical symmetry of the system is broken. As a conse-
quence, the electron wave function spreading is enhanced
and the binding energy of the donor electron decreases.
We see this behavior in Figure 8 and Figure 9 for a
midpoint (R0 = R/2) donor and an interface (R0 = R)
donor, respectively. Although the binding energy in the
W − α space for the midpoint donor behaves similarly to
that of a dot-center donor, it is about a quarter smaller,
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Fig. 9. Binding energy of a shallow donor at the dot center R0 = R (bullets) as a function of the W and α interface parameters
for four QDs with radii: (a) R = 50 Å, (b) R = 60 Å, (c) R = 100 Å, and (d) R = 200 Å. Lines below and above the dots
indicate the relationship of the binding energy value with the blue and red interface related energy level shifts, respectively.

and its shift due to the interface fluctuation is about a
half less for the small dots (R = 50 Å, and 60 Å), and
about three fourths less for the larger dots (R = 100 Å,
and 200 Å). In fact, the interface effect can be neglected
for the R = 200 Å dot since it provides a maximum blue
(red) shift of only 0.22 (0.14) meV, which is comparable
with the typical accuracy of 2 cm−1 (∼0.25 meV) attained
in recent optical experiments [2].

The state widths of the interface donor have a differ-
ent character from those of the dot-center and midpoint
donors for the larger QDs. All the shifts of the shallow
donor binding energy in large QDs due to graded inter-
faces are experimentally negligible due to their small abso-
lute values. For the strong confinement dotR = 50 Å with
α → 1, the binding energy does not grow monotonously
when the interface width increases as it does for the dot-
center and midpoint donor. The reason for this is of two
fold: first, the interface donor has a higher energy than the
others, which forces the asymptotic 3D behavior earlier in
the strong confinement QDs; and second, the Coulomb po-
tential is screened by the barrier when α→ 1 and W 6= 0,
so that such dressed potential is weaker for the electron
binding. The blue-shift and the red-shift sector in Figure 9
exchange their position in the W − α space when the dot
radius increase - compare Figure 9a and Figure 9b to Fig-
ure 9c and Figure 9d. This can be understood qualita-
tively by the following. For the large dots, the influence of
a dot-size fluctuation on the electron energy can be very
weak, while changing α in the case of a fix W is equiva-

lent to such fluctuation. On the other hand, the screened
Coulomb potential varies also, which may increase (de-
crease) the binding energy of the donor when it moves
out of (into) the AlxGa1−xAs alloy region.

Finally, we show in Figure 10 the dot-radius depen-
dence of the binding energy for a shallow donor which
is located at three typical positions: R0 = 0 (upper-),
R0 = R/2 (middle-), and R0 = R (lower-group curves) in
a graded QD. The QD interface is supposed to be at three
typical positions indicated by (a) α = 0.0, (b) α = 0.5, and
(c) α = 1.0 and having three different widths W = 0 Å
(solid), W = 10 Å (dashed), and W = 20 Å (dot-dashed
curves). It is clearly shown in Figure 10(b) that the in-
terface effect on the binding energy is small, despite the
important interface related correction on the QDs energy
levels. An effective method to diminish the energy broad-
ening in a QD structure is through a shallow donor doping
in the interface, which can be observed from Figure 10.
Comparing Figure 10a with Figure 10c, we can see when
α = 0 that a wider interface decreases the QD confine-
ment, while when α = 1 a wider interface enhances the
QD confinement. If the dot is large enough, the states of
the dot-center (R0 = 0) and of the midpoint (R0 = R/2)
donors degenerate, presenting an asymptotic behavior as
a donor in bulk GaAs. On the other hand, the interface
(R0 = R) donor is always in contact with two different
semiconductors, so that the potential of the barrier pushes
the electron away from the donor center, resulting that its
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Fig. 10. Dot-radius dependence of the binding energy of a
donor at three typical positions: R0 = 0 (upper group of
curves), R0 = R/2 (middle group of curves) and R0 = R
(lower group of curves) in graded GaAs/Al0.3Ga0.7As quan-
tum dots with interfaces widths W = 0 Å (solid), W = 10 Å
(dashed), and W = 20 Å (dotted dashed curves), and locations
(a) α = 0.0, (b) α = 0.5, and (c) α = 1.0.

binding energy is dependent on the barrier height, weakly
than that of a donor in bulk materials.

In the present case (x = 0.3), we found that the
binding energy of the interface donor in the abrupt dots
approaches to 0.23R∗. When the dot radius decreases,
the binding energy of the donor state first increases,
and reaches the maximum value around R = 35 Å (see
Fig. 6), decreasing when R → 0. This behavior is due
to the finite height of the AlxGa1−xAs barrier, which
makes the system behavior to change from 3D GaAs to a
GaAs/AlxGa1−xAs QD, and finally to bulk AlxGa1−xAs.
The maximum binding energy (∼45 meV) of a shallow
donor in the GaAs/Al0.3Ga0.7As QDs is about 1.5, 3 and
9 times higher than the binding energies in quantum wires,
QWs, and in bulk GaAs, that are 30 meV, 15 meV and 6
meV, respectively [5,34]. As a consequence of the dot-size
fluctuation related to the width and/or the position of the
interface, the actual value of RMIN changes. For instance,
when the interface width W = 10 (20) Å and α = 1.0
(0.5; 0.0), the minimum dot radius for the possible bound
ground state is 18 (13) (23 (23); 28 (33)) Å.

5 Conclusions

We have performed a theoretical study on the inter-
face related energy level shifts of electrons in graded
GaAs/AlxGa1−xAs QDs, without and with the presence
of a shallow donor. The interface description was based on
the assumption that a graded Aly(r)Ga1−y(r)As alloy ex-
ist in the interface region between GaAs and AlxGa1−xAs.
Considering a linear variation for the interfacial Al pro-
file, we have obtained expressions for the QD confine-
ment potential and electron effective mass in the inter-
face region. A multistep potential scheme was developed
to accurately solve Schrödinger-like equations to obtain
the wave functions and the energy levels of the electron
states. When shallow donors were considered, a variational
approach was used to calculate the electron bound states.
The graded interface effects were analyzed through two
parameters, one associated to the interface width (W ),
and the other (α) describing the interface positioning.
Isoenergetic lines in the W −α interface space were shown
to be a convenient picture to describe the interface related
energy level broadening.

The interface effect was found to produce a blue or a
red shift on the energy levels of electrons and donors in
GaAs/AlxGa1−xAs QDs, and consequently a blue or red
shift in their intersubband transition and donor binding
energies. These shifts depend not only on the interface
width, but also on the interface and on the donor position.
In strong confinement systems, they are very large and
should be observable in experiments. The interface effect
was shown to be stronger in excited than in ground state
energy level states. Shifts on the intersubband transition
energies as large as 90 meV were obtained for the strong
confinement case. It was shown that doping the graded
interface region of quantum dots can reduce considerably
the interface related shifts of their energy levels, as much
as 20 meV in the strong confinement case (dots with ∼
50 Å radius and a 20 Å wide interface).

Recent experimental work on the PL spectra obtained
by probing just one single QD found only one PL peak,
and an explanation of its position needed a smaller dot
radius than actually it was estimated considering sharp
interfaces [18,19]. This seems to support that the inter-
face region is restricted to be completely inside the QD
(α = 1). However, a direct comparison of our results with
experimental data are not possible since: (i) the interface
of GaAs/AlxGa1−xAs QDs were not characterized yet, to
the knowledge of the authors; (ii) we have not consid-
ered holes and the electron-hole interaction in the Hamil-
tonian (1), and consequently it is not possible to calcu-
late the exciton binding energy in the QDs. Our results
highlight that an estimation of the dot radius to be used
in a sharp interface model needs detailed information on
the actual localization and width of the dot interface. Al-
though the results presented in this work were obtained
for a GaAs/Al0.3Ga0.7As spherical QD, they are also valid
for QDs of other types of semiconductors, with changes
in the figures of merit however. The approach developed
here can be easily generalized for interfaces with different
shapes, as well as for others low dimensional structures.



348 The European Physical Journal B

Further studies on the these possibilities and on the study
of interface effects on the exciton binding energy (includ-
ing also the presence of applied external electric and mag-
netic fields) are in progress within the W − α interface
description scheme. Finally, the interface description can
be easily used to investigate different types of interface
profiles by changing the function y(r) (see Eq. (3)). How-
ever, the main conclusions of the present work will not
change.
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